# DiscreteDistr

#### trait DiscreteDistr[T] extends Density[T] with Rand[T]

Represents a discrete Distribution.

Linear Supertypes
Rand[T], Density[T], AnyRef, Any
Known Subclasses
Ordering
1. Alphabetic
2. By inheritance
Inherited
1. DiscreteDistr
2. Rand
3. Density
4. AnyRef
5. Any
1. Hide All
2. Show all
Visibility
1. Public
2. All

### Abstract Value Members

1. #### abstract def draw(): T

Gets one sample from the distribution.

Gets one sample from the distribution. Equivalent to sample()

Definition Classes
Rand
2. #### abstract def probabilityOf(x: T): Double

Returns the probability of that draw.

### Concrete Value Members

1. #### final def !=(arg0: AnyRef): Boolean

Definition Classes
AnyRef
2. #### final def !=(arg0: Any): Boolean

Definition Classes
Any
3. #### final def ##(): Int

Definition Classes
AnyRef → Any
4. #### final def ==(arg0: AnyRef): Boolean

Definition Classes
AnyRef
5. #### final def ==(arg0: Any): Boolean

Definition Classes
Any
6. #### def apply(x: T): Double

Returns the unnormalized value of the measure

Returns the unnormalized value of the measure

Definition Classes
DiscreteDistrDensity
7. #### final def asInstanceOf[T0]: T0

Definition Classes
Any
8. #### def clone(): AnyRef

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( ... )
9. #### def condition(p: (T) ⇒ Boolean): Rand[T]

Definition Classes
Rand
10. #### def drawOpt(): Option[T]

Overridden by filter/map/flatmap for monadic invocations.

Overridden by filter/map/flatmap for monadic invocations. Basically, rejeciton samplers will return None here

Definition Classes
Rand
11. #### final def eq(arg0: AnyRef): Boolean

Definition Classes
AnyRef
12. #### def equals(arg0: Any): Boolean

Definition Classes
AnyRef → Any
13. #### def filter(p: (T) ⇒ Boolean): Rand[T]

Definition Classes
Rand
14. #### def finalize(): Unit

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
15. #### def flatMap[E](f: (T) ⇒ Rand[E]): Rand[E]

Converts a random sampler of one type to a random sampler of another type.

Converts a random sampler of one type to a random sampler of another type. Examples: randInt(10).flatMap(x => randInt(3 * x.asInstanceOf[Int]) gives a Rand[Int] in the range [0,30] Equivalently, for(x <- randInt(10); y <- randInt(30 *x)) yield y

f

the transform to apply to the sampled value.

Definition Classes
Rand
16. #### def foreach(f: (T) ⇒ Unit): Unit

Samples one element and qpplies the provided function to it.

Samples one element and qpplies the provided function to it. Despite the name, the function is applied once. Sample usage:

``` for(x <- Rand.uniform) { println(x) }
```

f

the function to be applied

Definition Classes
Rand
17. #### def get(): T

Definition Classes
Rand
18. #### final def getClass(): Class[_]

Definition Classes
AnyRef → Any
19. #### def hashCode(): Int

Definition Classes
AnyRef → Any
20. #### final def isInstanceOf[T0]: Boolean

Definition Classes
Any
21. #### def logApply(x: T): Double

Returns the log unnormalized value of the measure

Returns the log unnormalized value of the measure

Definition Classes
DiscreteDistrDensity

23. #### def map[E](f: (T) ⇒ E): Rand[E]

Converts a random sampler of one type to a random sampler of another type.

Converts a random sampler of one type to a random sampler of another type. Examples: uniform.map(_*2) gives a Rand[Double] in the range [0,2] Equivalently, for(x <- uniform) yield 2*x

f

the transform to apply to the sampled value.

Definition Classes
Rand
24. #### final def ne(arg0: AnyRef): Boolean

Definition Classes
AnyRef
25. #### final def notify(): Unit

Definition Classes
AnyRef
26. #### final def notifyAll(): Unit

Definition Classes
AnyRef
27. #### def sample(n: Int): IndexedSeq[T]

Gets n samples from the distribution.

Gets n samples from the distribution.

Definition Classes
Rand
28. #### def sample(): T

Gets one sample from the distribution.

Gets one sample from the distribution. Equivalent to get()

Definition Classes
Rand
29. #### def samples: Iterator[T]

An infinitely long iterator that samples repeatedly from the Rand

An infinitely long iterator that samples repeatedly from the Rand

returns

an iterator that repeatedly samples

Definition Classes
Rand
30. #### final def synchronized[T0](arg0: ⇒ T0): T0

Definition Classes
AnyRef
31. #### def toString(): String

Definition Classes
AnyRef → Any

33. #### def unnormalizedProbabilityOf(x: T): Double

Returns the probability of that draw up to a constant

34. #### final def wait(): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
35. #### final def wait(arg0: Long, arg1: Int): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
36. #### final def wait(arg0: Long): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
37. #### def withFilter(p: (T) ⇒ Boolean): Rand[T]

Definition Classes
Rand