# Beta

#### class Beta extends ContinuousDistr[Double] with Moments[Double, Double]

The Beta distribution, which is the conjugate prior for the Bernoulli distribution

Linear Supertypes
Moments[Double, Double], ContinuousDistr[Double], Rand[Double], Density[Double], AnyRef, Any
Ordering
1. Alphabetic
2. By inheritance
Inherited
1. Beta
2. Moments
3. ContinuousDistr
4. Rand
5. Density
6. AnyRef
7. Any
1. Hide All
2. Show all
Visibility
1. Public
2. All

### Instance Constructors

1. #### new Beta(a: Double, b: Double)(implicit rand: RandBasis = Rand)

a

the number of pseudo-observations for true

b

the number of pseudo-observations for false

### Value Members

1. #### final def !=(arg0: AnyRef): Boolean

Definition Classes
AnyRef
2. #### final def !=(arg0: Any): Boolean

Definition Classes
Any
3. #### final def ##(): Int

Definition Classes
AnyRef → Any
4. #### final def ==(arg0: AnyRef): Boolean

Definition Classes
AnyRef
5. #### final def ==(arg0: Any): Boolean

Definition Classes
Any
6. #### def apply(x: Double): Double

Returns the unnormalized value of the measure

Returns the unnormalized value of the measure

Definition Classes
ContinuousDistrDensity
7. #### final def asInstanceOf[T0]: T0

Definition Classes
Any
8. #### def clone(): AnyRef

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( ... )
9. #### def condition(p: (Double) ⇒ Boolean): Rand[Double]

Definition Classes
Rand
10. #### def draw(): Double

Gets one sample from the distribution.

Gets one sample from the distribution. Equivalent to sample()

Definition Classes
BetaRand
11. #### def drawOpt(): Option[Double]

Overridden by filter/map/flatmap for monadic invocations.

Overridden by filter/map/flatmap for monadic invocations. Basically, rejeciton samplers will return None here

Definition Classes
Rand
12. #### def entropy: Double

Definition Classes
BetaMoments
13. #### final def eq(arg0: AnyRef): Boolean

Definition Classes
AnyRef
14. #### def equals(arg0: Any): Boolean

Definition Classes
AnyRef → Any
15. #### def filter(p: (Double) ⇒ Boolean): Rand[Double]

Definition Classes
Rand
16. #### def finalize(): Unit

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
17. #### def flatMap[E](f: (Double) ⇒ Rand[E]): Rand[E]

Converts a random sampler of one type to a random sampler of another type.

Converts a random sampler of one type to a random sampler of another type. Examples: randInt(10).flatMap(x => randInt(3 * x.asInstanceOf[Int]) gives a Rand[Int] in the range [0,30] Equivalently, for(x <- randInt(10); y <- randInt(30 *x)) yield y

f

the transform to apply to the sampled value.

Definition Classes
Rand
18. #### def foreach(f: (Double) ⇒ Unit): Unit

Samples one element and qpplies the provided function to it.

Samples one element and qpplies the provided function to it. Despite the name, the function is applied once. Sample usage:

``` for(x <- Rand.uniform) { println(x) }
```

f

the function to be applied

Definition Classes
Rand
19. #### def get(): Double

Definition Classes
Rand
20. #### final def getClass(): Class[_]

Definition Classes
AnyRef → Any
21. #### def hashCode(): Int

Definition Classes
AnyRef → Any
22. #### final def isInstanceOf[T0]: Boolean

Definition Classes
Any
23. #### def logApply(x: Double): Double

Returns the log unnormalized value of the measure

Returns the log unnormalized value of the measure

Definition Classes
ContinuousDistrDensity
24. #### val logNormalizer: Double

Definition Classes
BetaContinuousDistr
25. #### def logPdf(x: Double): Double

Definition Classes
ContinuousDistr
26. #### def map[E](f: (Double) ⇒ E): Rand[E]

Converts a random sampler of one type to a random sampler of another type.

Converts a random sampler of one type to a random sampler of another type. Examples: uniform.map(_*2) gives a Rand[Double] in the range [0,2] Equivalently, for(x <- uniform) yield 2*x

f

the transform to apply to the sampled value.

Definition Classes
Rand
27. #### def mean: Double

Definition Classes
BetaMoments
28. #### def mode: Double

Definition Classes
BetaMoments
29. #### final def ne(arg0: AnyRef): Boolean

Definition Classes
AnyRef
30. #### final def notify(): Unit

Definition Classes
AnyRef
31. #### final def notifyAll(): Unit

Definition Classes
AnyRef
32. #### def pdf(x: Double): Double

Returns the probability density function at that point.

Returns the probability density function at that point.

Definition Classes
ContinuousDistr
33. #### def sample(n: Int): IndexedSeq[Double]

Gets n samples from the distribution.

Gets n samples from the distribution.

Definition Classes
Rand
34. #### def sample(): Double

Gets one sample from the distribution.

Gets one sample from the distribution. Equivalent to get()

Definition Classes
Rand
35. #### def samples: Iterator[Double]

An infinitely long iterator that samples repeatedly from the Rand

An infinitely long iterator that samples repeatedly from the Rand

returns

an iterator that repeatedly samples

Definition Classes
Rand
36. #### final def synchronized[T0](arg0: ⇒ T0): T0

Definition Classes
AnyRef
37. #### def toString(): String

Definition Classes
AnyRef → Any
38. #### def unnormalizedLogPdf(x: Double): Double

Definition Classes
BetaContinuousDistr
39. #### def unnormalizedPdf(x: Double): Double

Returns the probability density function up to a constant at that point.

Returns the probability density function up to a constant at that point.

Definition Classes
ContinuousDistr
40. #### def variance: Double

Definition Classes
BetaMoments
41. #### final def wait(): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
42. #### final def wait(arg0: Long, arg1: Int): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
43. #### final def wait(arg0: Long): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
44. #### def withFilter(p: (Double) ⇒ Boolean): Rand[Double]

Definition Classes
Rand