 Linear Supertypes
DiffFunction[DenseVector[Double]], StochasticDiffFunction[DenseVector[Double]], (DenseVector[Double]) ⇒ Double, AnyRef, Any
Ordering
1. Alphabetic
2. By inheritance
Inherited
2. DiffFunction
3. StochasticDiffFunction
4. Function1
5. AnyRef
6. Any
1. Hide All
2. Show all
Visibility
1. Public
2. All

### Value Members

1. #### final def !=(arg0: AnyRef): Boolean

Definition Classes
AnyRef
2. #### final def !=(arg0: Any): Boolean

Definition Classes
Any
3. #### final def ##(): Int

Definition Classes
AnyRef → Any
4. #### final def ==(arg0: AnyRef): Boolean

Definition Classes
AnyRef
5. #### final def ==(arg0: Any): Boolean

Definition Classes
Any
6. #### def andThen[A](g: (Double) ⇒ A): (DenseVector[Double]) ⇒ A

Definition Classes
Function1
Annotations
@unspecialized()
7. #### final def apply(x: DenseVector[Double]): Double

Definition Classes
StochasticDiffFunction → Function1
8. #### final def asInstanceOf[T0]: T0

Definition Classes
Any
9. #### def calculate(x: DenseVector[Double]): (Double, DenseVector[Double])

Return value and gradient of the quadratic model at the current iterate: q_k(p) = f_k + (p-x_k)T g_k + 1/2 (p-x_k)T B_k(p-x_k) \nabla q_k(p) = g_k + B_k(p-x_k)

Return value and gradient of the quadratic model at the current iterate: q_k(p) = f_k + (p-x_k)T g_k + 1/2 (p-x_k)T B_k(p-x_k) \nabla q_k(p) = g_k + B_k(p-x_k)

Definition Classes
10. #### def clone(): AnyRef

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( ... )
11. #### def compose[A](g: (A) ⇒ DenseVector[Double]): (A) ⇒ Double

Definition Classes
Function1
Annotations
@unspecialized()
12. #### final def eq(arg0: AnyRef): Boolean

Definition Classes
AnyRef
13. #### def equals(arg0: Any): Boolean

Definition Classes
AnyRef → Any
14. #### def finalize(): Unit

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
15. #### final def getClass(): Class[_]

Definition Classes
AnyRef → Any
16. #### def gradientAt(x: DenseVector[Double]): DenseVector[Double]

calculates the gradient at a point

calculates the gradient at a point

Definition Classes
StochasticDiffFunction
17. #### def hashCode(): Int

Definition Classes
AnyRef → Any
18. #### final def isInstanceOf[T0]: Boolean

Definition Classes
Any
19. #### final def ne(arg0: AnyRef): Boolean

Definition Classes
AnyRef
20. #### final def notify(): Unit

Definition Classes
AnyRef
21. #### final def notifyAll(): Unit

Definition Classes
AnyRef
22. #### final def synchronized[T0](arg0: ⇒ T0): T0

Definition Classes
AnyRef
23. #### def throughLens[U](implicit l: Isomorphism[DenseVector[Double], U]): DiffFunction[U]

Lenses provide a way of mapping between two types, which we typically use to convert something to a DenseVector or other Tensor for optimization purposes.

Lenses provide a way of mapping between two types, which we typically use to convert something to a DenseVector or other Tensor for optimization purposes.

Definition Classes
StochasticDiffFunction
24. #### def toString(): String

Definition Classes
Function1 → AnyRef → Any
25. #### def valueAt(x: DenseVector[Double]): Double

calculates the value at a point

calculates the value at a point

Definition Classes
StochasticDiffFunction
26. #### final def wait(): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
27. #### final def wait(arg0: Long, arg1: Int): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
28. #### final def wait(arg0: Long): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )