# SliceVector

#### class SliceVector[K, V] extends Vector[V]

A SliceVector is a vector that is a view of another underlying tensor. For instance:

```val m = DenseMatrix(...)
m( (1,2), (3,4), (4,5))```

will give a SliceVector such that apply/update at index 0 will map to m(1,2), index 1 to m(3,4), etc.

Linear Supertypes
Vector[V], VectorLike[V, Vector[V]], Tensor[Int, V], TensorLike[Int, V, Vector[V]], NumericOps[Vector[V]], QuasiTensor[Int, V], AnyRef, Any
Ordering
1. Alphabetic
2. By inheritance
Inherited
1. SliceVector
2. Vector
3. VectorLike
4. Tensor
5. TensorLike
6. NumericOps
7. QuasiTensor
8. AnyRef
9. Any
1. Hide All
2. Show all
Visibility
1. Public
2. All

### Value Members

1. #### final def !=(arg0: AnyRef): Boolean

Definition Classes
AnyRef
2. #### final def !=(arg0: Any): Boolean

Definition Classes
Any
3. #### final def ##(): Int

Definition Classes
AnyRef → Any
4. #### final def %[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpMod.Impl2[TT, B, That]): That

Alias for :%(b) when b is a scalar.

Alias for :%(b) when b is a scalar.

Definition Classes
NumericOps
5. #### final def %=[TT >: Vector[V], B](b: B)(implicit op: operators.OpMod.InPlaceImpl2[TT, B]): Vector[V]

Alias for :%=(b) when b is a scalar.

Alias for :%=(b) when b is a scalar.

Definition Classes
NumericOps
6. #### final def &[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpAnd.Impl2[TT, B, That]): That

Alias for :&&(b) for all b.

Alias for :&&(b) for all b.

Definition Classes
NumericOps
7. #### final def &=[TT >: Vector[V], B](b: B)(implicit op: operators.OpAnd.InPlaceImpl2[TT, B]): Vector[V]

Mutates this by element-wise and of this and b.

Mutates this by element-wise and of this and b.

Definition Classes
NumericOps
8. #### final def *[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpMulMatrix.Impl2[TT, B, That]): That

Matrix multiplication

Matrix multiplication

Definition Classes
NumericOps
9. #### final def *=[TT >: Vector[V], B](b: B)(implicit op: operators.OpMulScalar.InPlaceImpl2[TT, B]): Vector[V]

Alias for :*=(b) when b is a scalar.

Alias for :*=(b) when b is a scalar.

Definition Classes
NumericOps
10. #### final def +[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpAdd.Impl2[TT, B, That]): That

Alias for :+(b) for all b.

Alias for :+(b) for all b.

Definition Classes
NumericOps
11. #### final def +=[TT >: Vector[V], B](b: B)(implicit op: operators.OpAdd.InPlaceImpl2[TT, B]): Vector[V]

Alias for :+=(b) for all b.

Alias for :+=(b) for all b.

Definition Classes
NumericOps
12. #### final def -[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpSub.Impl2[TT, B, That]): That

Alias for :-(b) for all b.

Alias for :-(b) for all b.

Definition Classes
NumericOps
13. #### final def -=[TT >: Vector[V], B](b: B)(implicit op: operators.OpSub.InPlaceImpl2[TT, B]): Vector[V]

Alias for :-=(b) for all b.

Alias for :-=(b) for all b.

Definition Classes
NumericOps
14. #### final def /[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpDiv.Impl2[TT, B, That]): That

Alias for :/(b) when b is a scalar.

Alias for :/(b) when b is a scalar.

Definition Classes
NumericOps
15. #### final def /=[TT >: Vector[V], B](b: B)(implicit op: operators.OpDiv.InPlaceImpl2[TT, B]): Vector[V]

Alias for :/=(b) when b is a scalar.

Alias for :/=(b) when b is a scalar.

Definition Classes
NumericOps
16. #### final def :!=[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpNe.Impl2[TT, B, That]): That

Element-wise inequality comparator of this and b.

Element-wise inequality comparator of this and b.

Definition Classes
NumericOps
17. #### final def :%[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpMod.Impl2[TT, B, That]): That

Element-wise modulo of this and b.

Element-wise modulo of this and b.

Definition Classes
NumericOps
18. #### final def :%=[TT >: Vector[V], B](b: B)(implicit op: operators.OpMod.InPlaceImpl2[TT, B]): Vector[V]

Mutates this by element-wise modulo of b into this.

Mutates this by element-wise modulo of b into this.

Definition Classes
NumericOps
19. #### final def :&[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpAnd.Impl2[TT, B, That]): That

Element-wise logical "and" operator -- returns true if corresponding elements are non-zero.

Element-wise logical "and" operator -- returns true if corresponding elements are non-zero.

Definition Classes
NumericOps
20. #### final def :&=[TT >: Vector[V], B](b: B)(implicit op: operators.OpAnd.InPlaceImpl2[TT, B]): Vector[V]

Mutates this by element-wise and of this and b.

Mutates this by element-wise and of this and b.

Definition Classes
NumericOps
21. #### final def :*[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpMulScalar.Impl2[TT, B, That]): That

Element-wise product of this and b.

Element-wise product of this and b.

Definition Classes
NumericOps
22. #### final def :*=[TT >: Vector[V], B](b: B)(implicit op: operators.OpMulScalar.InPlaceImpl2[TT, B]): Vector[V]

Mutates this by element-wise multiplication of b into this.

Mutates this by element-wise multiplication of b into this.

Definition Classes
NumericOps
23. #### final def :+[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpAdd.Impl2[TT, B, That]): That

Element-wise sum of this and b.

Element-wise sum of this and b.

Definition Classes
NumericOps
24. #### final def :+=[TT >: Vector[V], B](b: B)(implicit op: operators.OpAdd.InPlaceImpl2[TT, B]): Vector[V]

Mutates this by element-wise addition of b into this.

Mutates this by element-wise addition of b into this.

Definition Classes
NumericOps
25. #### final def :-[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpSub.Impl2[TT, B, That]): That

Element-wise difference of this and b.

Element-wise difference of this and b.

Definition Classes
NumericOps
26. #### final def :-=[TT >: Vector[V], B](b: B)(implicit op: operators.OpSub.InPlaceImpl2[TT, B]): Vector[V]

Mutates this by element-wise subtraction of b from this

Mutates this by element-wise subtraction of b from this

Definition Classes
NumericOps
27. #### final def :/[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpDiv.Impl2[TT, B, That]): That

Element-wise quotient of this and b.

Element-wise quotient of this and b.

Definition Classes
NumericOps
28. #### final def :/=[TT >: Vector[V], B](b: B)(implicit op: operators.OpDiv.InPlaceImpl2[TT, B]): Vector[V]

Mutates this by element-wise division of b into this

Mutates this by element-wise division of b into this

Definition Classes
NumericOps
29. #### final def :<[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpLT.Impl2[TT, B, That]): That

Element-wise less=than comparator of this and b.

Element-wise less=than comparator of this and b.

Definition Classes
NumericOps
30. #### final def :<=[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpLTE.Impl2[TT, B, That]): That

Element-wise less-than-or-equal-to comparator of this and b.

Element-wise less-than-or-equal-to comparator of this and b.

Definition Classes
NumericOps
31. #### final def :=[TT >: Vector[V], B](b: B)(implicit op: operators.OpSet.InPlaceImpl2[TT, B]): Vector[V]

Mutates this by element-wise assignment of b into this.

Mutates this by element-wise assignment of b into this.

Definition Classes
NumericOps
32. #### final def :==[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpEq.Impl2[TT, B, That]): That

Element-wise equality comparator of this and b.

Element-wise equality comparator of this and b.

Definition Classes
NumericOps
33. #### final def :>[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpGT.Impl2[TT, B, That]): That

Element-wise greater-than comparator of this and b.

Element-wise greater-than comparator of this and b.

Definition Classes
NumericOps
34. #### final def :>=[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpGTE.Impl2[TT, B, That]): That

Element-wise greater-than-or-equal-to comparator of this and b.

Element-wise greater-than-or-equal-to comparator of this and b.

Definition Classes
NumericOps
35. #### final def :^[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpPow.Impl2[TT, B, That]): That

Element-wise exponentiation of this and b.

Element-wise exponentiation of this and b.

Definition Classes
NumericOps
36. #### final def :^=[TT >: Vector[V], B](b: B)(implicit op: operators.OpPow.InPlaceImpl2[TT, B]): Vector[V]

Mutates this by element-wise exponentiation of this by b.

Mutates this by element-wise exponentiation of this by b.

Definition Classes
NumericOps
37. #### final def :^^[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpXor.Impl2[TT, B, That]): That

Element-wise logical "xor" operator -- returns true if only one of the corresponding elements is non-zero.

Element-wise logical "xor" operator -- returns true if only one of the corresponding elements is non-zero.

Definition Classes
NumericOps
38. #### final def :^^=[TT >: Vector[V], B](b: B)(implicit op: operators.OpXor.InPlaceImpl2[TT, B]): Vector[V]

Mutates this by element-wise xor of this and b.

Mutates this by element-wise xor of this and b.

Definition Classes
NumericOps
39. #### final def :|[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpOr.Impl2[TT, B, That]): That

Element-wise logical "or" operator -- returns true if either element is non-zero.

Element-wise logical "or" operator -- returns true if either element is non-zero.

Definition Classes
NumericOps
40. #### final def :|=[TT >: Vector[V], B](b: B)(implicit op: operators.OpOr.InPlaceImpl2[TT, B]): Vector[V]

Mutates this by element-wise or of this and b.

Mutates this by element-wise or of this and b.

Definition Classes
NumericOps
41. #### final def ==(arg0: AnyRef): Boolean

Definition Classes
AnyRef
42. #### final def ==(arg0: Any): Boolean

Definition Classes
Any
43. #### def \[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpSolveMatrixBy.Impl2[TT, B, That]): That

Shaped solve of this by b.

Shaped solve of this by b.

Definition Classes
NumericOps
44. #### final def ^^[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpXor.Impl2[TT, B, That]): That

Alias for :^^(b) for all b.

Alias for :^^(b) for all b.

Definition Classes
NumericOps
45. #### final def ^^=[TT >: Vector[V], B](b: B)(implicit op: operators.OpXor.InPlaceImpl2[TT, B]): Vector[V]

Mutates this by element-wise xor of this and b.

Mutates this by element-wise xor of this and b.

Definition Classes
NumericOps
46. #### def active: TensorActive[Int, V, Vector[V]]

Definition Classes
TensorLike
47. #### def activeIterator: Iterator[(Int, V)]

Definition Classes
SliceVectorQuasiTensor
48. #### def activeKeysIterator: Iterator[Int]

Definition Classes
SliceVectorQuasiTensor
49. #### def activeSize: Int

Definition Classes
SliceVectorTensorLike
50. #### def activeValuesIterator: Iterator[V]

Definition Classes
SliceVectorQuasiTensor
51. #### def apply(i: Int): V

Definition Classes
SliceVectorTensorLikeQuasiTensor
52. #### def apply[Slice1, Slice2, Result](slice1: Slice1, slice2: Slice2)(implicit canSlice: CanSlice2[Vector[V], Slice1, Slice2, Result]): Result

Method for slicing that is tuned for Matrices.

Method for slicing that is tuned for Matrices.

returns

Definition Classes
TensorLike
53. #### def apply[Result](a: Int, slice: Int*)(implicit canSlice: CanSlice[Vector[V], Seq[Int], Result]): Result

Slice a sequence of elements.

Slice a sequence of elements. Must be at least 2.

Result
a
slice
canSlice
returns

Definition Classes
TensorLike
54. #### def apply[Slice, Result](slice: Slice)(implicit canSlice: CanSlice[Vector[V], Slice, Result]): Result

method for slicing a tensor.

method for slicing a tensor. For instance, DenseVectors support efficient slicing by a Range object.

returns

Definition Classes
TensorLike
55. #### def argmax(implicit ord: Ordering[V]): Int

Definition Classes
QuasiTensor
56. #### def argmin(implicit ord: Ordering[V]): Int

Definition Classes
QuasiTensor
57. #### def argsort(implicit ord: Ordering[V]): IndexedSeq[Int]

Definition Classes
QuasiTensor
58. #### def argtopk(k: Int)(implicit ordering: Ordering[V]): IndexedSeq[Int]

Returns the k indices with maximum value.

Returns the k indices with maximum value. (NOT absolute value.)

k

how many to return

ordering
returns

Definition Classes
QuasiTensor
59. #### final def asInstanceOf[T0]: T0

Definition Classes
Any
60. #### def clone(): AnyRef

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( ... )
61. #### def copy: Vector[V]

Definition Classes
SliceVectorVectorLike
62. #### final def dot[TT >: Vector[V], B, BB >: B, That](b: B)(implicit op: operators.OpMulInner.Impl2[TT, BB, That]): That

Inner product of this and b.

Inner product of this and b.

Definition Classes
NumericOps
63. #### final def eq(arg0: AnyRef): Boolean

Definition Classes
AnyRef
64. #### def equals(p1: Any): Boolean

Definition Classes
Vector → AnyRef → Any
65. #### def finalize(): Unit

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
66. #### def findAll(f: (V) ⇒ Boolean): IndexedSeq[Int]

Returns all indices k whose value satisfies a predicate.

Returns all indices k whose value satisfies a predicate.

Definition Classes
QuasiTensor
67. #### def forall(fn: (Int, V) ⇒ Boolean): Boolean

Returns true if and only if the given predicate is true for all elements.

Returns true if and only if the given predicate is true for all elements.

Definition Classes
TensorLike
68. #### def forallValues(fn: (V) ⇒ Boolean): Boolean

Returns true if and only if the given predicate is true for all elements.

Returns true if and only if the given predicate is true for all elements.

Definition Classes
TensorLike
69. #### def foreach[U](fn: (V) ⇒ U): Unit

Definition Classes
VectorLike
70. #### def foreachKey[U](fn: (Int) ⇒ U): Unit

Applies the given function to each key in the tensor.

Applies the given function to each key in the tensor.

Definition Classes
TensorLike
71. #### def foreachPair[U](fn: (Int, V) ⇒ U): Unit

Applies the given function to each key and its corresponding value.

Applies the given function to each key and its corresponding value.

Definition Classes
TensorLike
72. #### def foreachValue[U](fn: (V) ⇒ U): Unit

Applies the given function to each value in the map (one for each element of the domain, including zeros).

Applies the given function to each value in the map (one for each element of the domain, including zeros).

Definition Classes
TensorLike
73. #### final def getClass(): Class[_]

Definition Classes
AnyRef → Any
74. #### def hashCode(): Int

Definition Classes
AnyRef → Any
75. #### final def isInstanceOf[T0]: Boolean

Definition Classes
Any
76. #### def iterator: Iterator[(Int, V)]

Definition Classes
VectorQuasiTensor
77. #### def keySet: Set[Int]

returns

the set of keys in this vector (0 until length)

Definition Classes
VectorQuasiTensor
78. #### def keys: TensorKeys[Int, V, Vector[V]]

Definition Classes
TensorLike
79. #### def keysIterator: Iterator[Int]

Definition Classes
VectorQuasiTensor
80. #### def length: Int

Definition Classes
SliceVectorVector
81. #### def map[E2, That](fn: (V) ⇒ E2)(implicit canMapValues: CanMapValues[Vector[V], V, E2, That]): That

Definition Classes
VectorLike
82. #### def mapActivePairs[TT >: Vector[V], O, That](f: (Int, V) ⇒ O)(implicit bf: CanMapKeyValuePairs[TT, Int, V, O, That]): That

Maps all active key-value pairs values.

Maps all active key-value pairs values.

Definition Classes
TensorLike
83. #### def mapActiveValues[TT >: Vector[V], O, That](f: (V) ⇒ O)(implicit bf: CanMapValues[TT, V, O, That]): That

Maps all non-zero values.

Maps all non-zero values.

Definition Classes
TensorLike
84. #### def mapPairs[TT >: Vector[V], O, That](f: (Int, V) ⇒ O)(implicit bf: CanMapKeyValuePairs[TT, Int, V, O, That]): That

Creates a new map containing a transformed copy of this map.

Creates a new map containing a transformed copy of this map.

Definition Classes
TensorLike
85. #### def mapValues[TT >: Vector[V], O, That](f: (V) ⇒ O)(implicit bf: CanMapValues[TT, V, O, That]): That

Creates a new map containing a transformed copy of this map.

Creates a new map containing a transformed copy of this map.

Definition Classes
TensorLike
86. #### def max(implicit ord: Ordering[V]): V

Definition Classes
QuasiTensor
87. #### def min(implicit ord: Ordering[V]): V

Definition Classes
QuasiTensor
88. #### final def ne(arg0: AnyRef): Boolean

Definition Classes
AnyRef
89. #### final def norm[TT >: Vector[V], B, R](b: B)(implicit op: norm.Impl2[TT, B, R]): R

Represents the norm of this vector

Represents the norm of this vector

Definition Classes
NumericOps
90. #### final def norm[TT >: Vector[V], R]()(implicit op: norm.Impl[TT, R]): R

Represents the "natural" norm of this vector, for types that don't support arbitrary norms

Represents the "natural" norm of this vector, for types that don't support arbitrary norms

Definition Classes
NumericOps
91. #### final def notify(): Unit

Definition Classes
AnyRef
92. #### final def notifyAll(): Unit

Definition Classes
AnyRef
93. #### def pairs: TensorPairs[Int, V, Vector[V]]

Definition Classes
TensorLike
94. #### def repr: Vector[V]

Definition Classes
SliceVectorNumericOps
95. #### def size: Int

Definition Classes
VectorTensorLike

97. #### def sum(implicit num: Numeric[V]): V

Definition Classes
QuasiTensor
98. #### final def synchronized[T0](arg0: ⇒ T0): T0

Definition Classes
AnyRef
99. #### final def t[TT >: Vector[V], That, Slice1, Slice2, Result](a: Slice1, b: Slice2)(implicit op: CanTranspose[TT, That], canSlice: CanSlice2[That, Slice1, Slice2, Result]): Result

A transposed view of this object, followed by a slice.

A transposed view of this object, followed by a slice. Sadly frequently necessary.

Definition Classes
NumericOps
100. #### final def t[TT >: Vector[V], That](implicit op: CanTranspose[TT, That]): That

A transposed view of this object.

A transposed view of this object.

Definition Classes
NumericOps

102. #### def toArray(implicit cm: ClassTag[V]): Array[V]

Definition Classes
Vector
103. #### def toDenseVector(implicit cm: ClassTag[V]): DenseVector[V]

Definition Classes
Vector
104. #### def toString(): String

Definition Classes
AnyRef → Any
105. #### final def unary_![TT >: Vector[V], That](implicit op: operators.OpNot.Impl[TT, That]): That

Definition Classes
NumericOps
106. #### final def unary_-[TT >: Vector[V], That](implicit op: operators.OpNeg.Impl[TT, That]): That

Definition Classes
NumericOps
107. #### def update(i: Int, v: V): Unit

Definition Classes
SliceVectorTensorLikeQuasiTensor
108. #### def values: TensorValues[Int, V, Vector[V]]

Definition Classes
TensorLike
109. #### def valuesIterator: Iterator[V]

Definition Classes
VectorQuasiTensor
110. #### final def wait(): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
111. #### final def wait(arg0: Long, arg1: Int): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
112. #### final def wait(arg0: Long): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
113. #### final def |[TT >: Vector[V], B, That](b: B)(implicit op: operators.OpOr.Impl2[TT, B, That]): That

Alias for :||(b) for all b.

Alias for :||(b) for all b.

Definition Classes
NumericOps
114. #### final def |=[TT >: Vector[V], B](b: B)(implicit op: operators.OpOr.InPlaceImpl2[TT, B]): Vector[V]

Mutates this by element-wise or of this and b.

Mutates this by element-wise or of this and b.

Definition Classes
NumericOps

### Deprecated Value Members

1. #### def all(implicit semi: Semiring[V]): Boolean

Returns true if all elements are non-zero

Returns true if all elements are non-zero

Definition Classes
QuasiTensor
Annotations
@deprecated
Deprecated

(Since version 0.6) Use breeze.linalg.all instead

2. #### def any(implicit semi: Semiring[V]): Boolean

Returns true if some element is non-zero

Returns true if some element is non-zero

Definition Classes
QuasiTensor
Annotations
@deprecated
Deprecated

(Since version 0.6) Use breeze.linalg.any instead